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Time behavior of the secondary flow between time-periodically corotating cylinders:
A two-frequency forcing case
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We consider the oscillatory flow between time-periodically corotating cylinders, in the case of a two-
frequency forcing. The angular velocityV(t) of the cylinders is the sum of a low-frequencyv1 oscillation plus
a harmonic frequencyv2 oscillation at a lower amplitude,V(t)5V1 cos(v1t)1V2 cos(v2t). The temporal
behavior of the secondary flow is characterized by ultrasound Doppler velocimetry. For a single-frequency
forcing atv1 , above a critical amplitudeV1 , within one cycle, the secondary flow measurements exhibit a
spikelike behavior with several successive growths, dampings, and periods of quietness. The effect of the
superimposedv2 frequency is the following, although if alone it would be stable: to sharpen the spikes,
restabilizing the flow for some intervals that exhibit secondary flow for the single forcing atv1 ; and to induce
further secondary flow spikes during what is a quiescent stage in the singlev1 frequency forcing case.
Numerical calculations for the finite-gap quasisteady linear stability analysis are presented and provide a good
prediction of the times of growth and damping of the secondary flow observed experimentally during a flow
period.
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Recently, the effect of a spatially periodic or time-period
perturbation on a primary bifurcation has been studied
hydrodynamical flows both theoretically and experimenta
@1,2#. In particular, the influence of a temporal modulation
a spatiotemporal pattern has been studied in the case
surface waves patterns excited by two-frequency forcing@3#
and of time-periodic thermal convection forced with an e
ternal frequency@4,5#. In contrast with these works, we he
consider the stability of a base flow generated by a tw
frequency external forcing. We use a Taylor-Couette geo
etry where the fluid is confined between twojointly corotat-
ing cylinders. The rotation is the sum of a low-frequen
oscillation plus a higher-frequency harmonic oscillation a
lower amplitude. Several open questions arise in this si
tion concerning the instability onset, the frequency inter
tion, and the time dependence of secondary flow. We fo
our attention on the last two points. In particular, the effect
the additional modulation is underlined by comparison w
the single-frequency forcing case. In previous works@6,7#,
we studied the flow between time-periodically corotati
cylinders, the angular velocityV of both cylinders having a
mean valueVm and modulation amplitudeV0 as V(t)
5Vm1V0 cos(vt). We established a finite-gap analytical e
pression for the purely azimuthal basic flow. The flow ins
bility, with a threshold characterized by the Taylor numb
Ta , was studied as a function of the rotation numberNR , the
frequencyg, and the gap sized, defined by

Ta5
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n being the viscosity,d the gap width, andR the inner cyl-
inder radius. Secondary flow corresponds to counterrota
vortices evolving in time. The temporal behavior of secon
ary flow was studied experimentally for different values
the parameters. In particular, we showed that secondary
grows and damps several times during a flow cycle. Num
cal and analytical results obtained with a quasisteady fin
gap linear stability analysis were shown to be in good agr
ment with the experimental secondary flow behavior
g<1.

We are here interested in the time dependence of the
ondary flow in the case of a two-frequency forcing, the a
gular rotation of both cylinders being

V~ t !5V1 cos~v1t !1V2 cos~v2t !.

We denote byt1 and t2 the periods of the frequenciesv1
andv2 .

The experimental setup, the measuring technique, and
operating procedure are the same as those described by@7#.
Instantaneous velocity profile measurements are obta
with an ultrasound Doppler velocimeter~Signal Processing
Dop 1000! in the rotating frame of the cylinders. The re
time evolution ofw(z,t) the axial velocity profile along the
axial directionz shows a repeated growth and decay in t
amplitude of axial flow. At any timet, we characterize the
secondary flow by the root-mean-square value

Wrms~ t !5S 1

N (
i 51

N

w2~zi ,t !D 1/2

.

We illustrate here the particular parameter values
©2002 The American Physical Society01-1
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g~v1!51, g~v2!54,
V2

V1
50.2, d50.112 with

Ta5
V1R1/2d3/2

n
.

This situation corresponds to a frequency ratiov2 /v1516.
The basic flow is given asVB,2F(x,t)5VB,LF(x,t)
1VB,HF(x,t), by the superposition of the basic flow
VB,LF(x,t) for g51 andVB,HF(x,t) for g54 with amplitude
V2 /V1 , expressions for these being given in@6,7#. Note that
the instability threshold for a single-frequency forcing atg
51 is close to the instability threshold for a single-frequen
forcing at g54 ~roughly Ta.200, see@8#! and that as a
consequence of the ratio chosen for the amplitudes of
two modulations, for the Taylor numbers considered (Ta
<500), the modulation forg54, if considered alone, would
be stable.

Figure 1 shows forTa5325 the evolution ofWrms(t) over
one cycle for the two-frequency forcing atg(v1)51 and
g(v2)54 ~thin curve! and for a single-frequency forcing a
g51 ~thick curve!. The Taylor numberTa is calculated us-
ing the amplitudeV1 , with an error lower than 3.5% due t
the viscosity estimation. The period is one cycle forg51
~roughly 86 s! and is scanned with about 518 data poin
The time origin of data acquisition has been chosen to be
moment when the rotation of the cylinders changes sign.
peaks correspond to successive growth and damping of
ondary flow~four times forg51!. For a destabilizing forc-
ing at the single frequencyg54, the evolution ofWrms(t)
during a cycle, not reproduced here, shows two large pe
of secondary flow. The comparison between the two plots
Fig. 1 shows that secondary flow peaks are strongly redu
in width in the two-frequency forcing case. Maximum pe

FIG. 1. Experimental behavior ofWrms(t) ~in mm/s! over one
flow period forTa5325 (d50.112) in the case of a two-frequenc
forcing at g(v1)51 with g(v2)54 ~thin curve! and of a single-
frequency forcing atg51 ~thick curve!.
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width is about half a period of the higher-frequency mod
lation, roughly 2.5 s. In particular, around the timest'0.1
and t'0.6, the high-amplitude peaks forg51 are split in
thin peaks. This windowing on the secondary flow tempo
regions induced by the higher frequency becomes even m
evident for higher Taylor numberTa , as exemplified in Fig.
2 for Ta5450.

For a single-frequency forcing atg<1, Ern and Wesfreid
@7# showed that a prediction of the secondary flow tempo

FIG. 3. Instantaneous critical Taylor numbers for the tw
frequency forcing atg(v1)51 with g(v2)54 obtained numeri-
cally over one flow cycle with a finite-gap quasisteady linear s
bility analysis (d50.112). Regions inside the curves indica
quasisteady unstable flow conditions. The horizontal lines for
ferent Ta values correspond to theWrms(t) peak widths observed
experimentally for an amplitude ofWrms50.15 ~thin lines! and
Wrms50.3 mm/s~thick lines!.

FIG. 2. Experimental behavior ofWrms(t) ~in mm/s! over one
flow period forTa5450 (d50.112) in the case of a two-frequenc
forcing at g(v1)51 with g(v2)54 ~thin curve! and of a single-
frequency forcing atg51 ~thick curve!.
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regions is given over a flow period by the quasisteady fin
gap linear stability analysis. We use the same numerical
cedure for the case of the two-frequency forcing. Neutral a
axisymmetric perturbations are considered. Figure 3 sh
the instantaneous critical Taylor numbers obtained at
fixed time t0 over a period for the corresponding basic flo
VB,2F(x,t0). Regions inside the curves correspond to u
stable flow conditions. Comparison with Figs. 1 and 2 sho
that there is a good agreement between experiments and
merical calculations. To facilitate the comparison for diffe
ent Taylor numbersTa , we have reported on the numeric
results of Fig. 3 the temporal widths of the experimen
peaks for the amplitudeWrms50.15 mm/s forTa5200 and
260 ~thin lines! andWrms50.3 mm/s forTa5280, 300, 325,
350, 400, 450, and 500~thick lines!, obtained by@9#. These
amplitudes were chosen as a compromise between disc
nating the maximum number of peaks and measuring t
maximal width. In particular, the windowing att2 of the
higher frequency over the secondary flow temporal regi
of g51 is well-recovered numerically. This peak windowin
can be explained in the quasisteady calculations by con
ering the evolution in time of the basic flow profile in th
gap, as illustrated in Fig. 4 for the timest50.14 and 0.18.
For t'0.14, bothVB,HF andVB,LF are negative, the resultin
basic flow has an accentuated curvature and the flow is fo
to be unstable. Fort'0.18 on the contrary, theVB,HF and
VB,LF curvatures compensate. The resultingVB,2F is then
nearly uniform over the gap, giving quasisteady stabil
This is in keeping with Rayleigh’s@10# and Hall’s @11# sta-
bility criterion in its finite-gap formulation, the minimum

FIG. 4. Profile across the gapx for the timest50.14 andt
50.18 of the base flow velocities for a single-frequency forci
VB,LF at g51 andVB,HF at g54, and for a two-frequency forcing
VB,2F5VB,LF1VB,HF at g51 with g54.
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value over the gap width of the instantaneous finite-gap R
leigh discriminant being negative fort'0.14 and positive for
t'0.18. Also interesting is the numerical prediction arou
the timest'0.3 and 0.8. Around these times, the flow
stable at the single frequencyg51. Here, in the presence o
g54, we see the existence of a temporal unstable reg
each half a periodt2/2 of theg54 modulation. Experimen-
tally, this behavior is more clearly observed around the ti
t'0.8 in Fig. 2, where secondary flow peaks appear ev
t2/2.

These results show good agreement for the tim
dependent behavior of secondary flow between the exp
ments and a finite-gap stability analysis assuming both q
sisteadiness and linearity. Most notable is the agreement
the prediction of the finite-gap quasisteady calculations t
the secondary flow experiences over one cycle of abou
successive growth and damping events, with a well-defi
periodicity~eithert2 or t2/2!. The particular times of appear
ance and disappearance of secondary flow are also prov
generally with a slight anticipation. The fact that the line
analysis is in good agreement with experimental results s
gest the following interpretation of the secondary flow b
havior. Two types of secondary flow are observed. The fi
near the timest'0.1, 0.4, 0.6, and 0.9, corresponds tog
51 secondary flow modified by the presence of the hig
frequencyg54, the main effect of this modulation being th
peak windowing. A physical explanation of flow restabiliz
tion leading to this peak windowing could account on t
fact that, for a forcing at a single frequency, the vortex str
ture reverses its rotation half a period later@7#. We suggest
that the peaks appear when the vortex structures induce
both frequencies rotate in the same direction. Half ag54
period later, the tendency of theg54 structures to rever
their rotation direction may damp the vortex structure. T
seems also supported by the fact that the two-freque
peaks for instance aroundt'0.1 andt'0.6 are not located
in the same place with respect to theg51 peaks but are
shifted byt2/2. The second type of secondary flow is the o
aroundt'0.3 and 0.8, wheng51 alone would have been
stable, and is due to the higher frequencyg54 oscillation
superimposed to the basic flow ofg51, which is at that time
close to a uniform rotation around its maximum amplitud
This flow is known to be unstable eacht2/2 @7#.

Further work includes variation of parameters such as
frequency ratioRg5g(v2)/g(v1) and the amplitude ratio
RV5V2 /V1 . In particular, in the range of validity forRg
andRV of a linear analysis, the numerical prediction of th
secondary flow temporal behavior may be extended to m
general periodic forcings. The effect of these parameters
the instability threshold also deserves investigation.
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