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Time behavior of the secondary flow between time-periodically corotating cylinders:
A two-frequency forcing case
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We consider the oscillatory flow between time-periodically corotating cylinders, in the case of a two-
frequency forcing. The angular veloci€y(t) of the cylinders is the sum of a low-frequeney oscillation plus
a harmonic frequencyw, oscillation at a lower amplitudeQ) (t) =, cos(qt)+, cos,t). The temporal
behavior of the secondary flow is characterized by ultrasound Doppler velocimetry. For a single-frequency
forcing atw,, above a critical amplitud€),, within one cycle, the secondary flow measurements exhibit a
spikelike behavior with several successive growths, dampings, and periods of quietness. The effect of the
superimposedv, frequency is the following, although if alone it would be stable: to sharpen the spikes,
restabilizing the flow for some intervals that exhibit secondary flow for the single forcing;aand to induce
further secondary flow spikes during what is a quiescent stage in the singfeequency forcing case.
Numerical calculations for the finite-gap quasisteady linear stability analysis are presented and provide a good
prediction of the times of growth and damping of the secondary flow observed experimentally during a flow
period.
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Recently, the effect of a spatially periodic or time-periodic v being the viscosityd the gap width, andR the inner cyl-
perturbation on a primary bifurcation has been studied foinder radius. Secondary flow corresponds to counterrotating
hydrodynamical flows both theoretically and experimentallyvortices evolving in time. The temporal behavior of second-
[1,2]. In particular, the influence of a temporal modulation onary flow was studied experimentally for different values of
a spatiotemporal pattern has been studied in the cases tife parameters. In particular, we showed that secondary flow
surface waves patterns excited by two-frequency for€8jg grows and damps several times during a flow cycle. Numeri-
and of time-periodic thermal convection forced with an ex-cal and analytical results obtained with a quasisteady finite-
ternal frequency4,5]. In contrast with these works, we here gap linear stability analysis were shown to be in good agree-
consider the stability of a base flow generated by a twoiment with the experimental secondary flow behavior for
frequency external forcing. We use a Taylor-Couette geomy<1.
etry where the fluid is confined between tyaintly corotat- We are here interested in the time dependence of the sec-
ing cylinders. The rotation is the sum of a low-frequencyondary flow in the case of a two-frequency forcing, the an-
oscillation plus a higher-frequency harmonic oscillation at agular rotation of both cylinders being
lower amplitude. Several open questions arise in this situa-
tion concerning the instability onset, the frequency interac-
tion, and the time dependence of secondary flow. We focus
our attention on the last two points. In particular, the effect of
the additional modulation is underlined by comparison withywe denote byr, and 7, the periods of the frequencies,
the single-frequency forcing case. In previous wof&s/], andw,.
we studied the flow between time-periodically corotating The experimental setup, the measuring technique, and the
cylinders, the angular velocit@ of both cylinders having a gperating procedure are the same as those describgg].by
mean value(),, and modulation amplitude}, as Q(t)  |nstantaneous velocity profile measurements are obtained
=Qp+ Qg cost). We established a finite-gap analytical ex- with an ultrasound Doppler velocimetéBignal Processing
pression for the purely azimuthal basic flow. The flow insta-pop 1000 in the rotating frame of the cylinders. The real
bility, with a threshold characterized by the Taylor numbertime evolution ofw(z,t) the axial velocity profile along the
Ta, was studied as a function of the rotation numNgr, the  axjal directionz shows a repeated growth and decay in the
frequencyy, and the gap sizé, defined by amplitude of axial flow. At any time, we characterize the

secondary flow by the root-mean-square value

Q(t) = Ql COS(wlt) +QZ COS(a)zt).

_QORl/2d3/2 \ _Qm d B de 1/2
a— v ’ R™ QO R’ Y= 20 y 1 N , 1/2
Wimndt) = NZ w(z;,t) .
i=1
and 6= =, . .
R We illustrate here the particular parameter values
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FIG. 1. Experimental behavior di,,{(t) (in mm/9 over one FIG. 2. Experimental behavior oV, ,{t) (in mm/9 over one
flow period forT,=325 (6=0.112) in the case of a two-frequency flow period forT,=450 (6=0.112) in the case of a two-frequency
forcing aty(w;)=1 with y(w,)=4 (thin curve and of a single- forcing at y(w;)=1 with y(w,)=4 (thin curvg and of a single-
frequency forcing aty=1 (thick curve. frequency forcing aty=1 (thick curve.

Q, width is about half a period of the higher-frequency modu-
Y(w)=1, y(wy) =4, 97:0_2, 5=0.112 with lation, roughly 2.5 s. In particular, around the times0.1
1 andt~0.6, the high-amplitude peaks for=1 are split in

thin peaks. This windowing on the secondary flow temporal

_91R1/2d3/2 regions induced by the higher frequency becomes even more
Ta= v ) evident for higher Taylor numbeér,, as exemplified in Fig.
2 for T,=450.
This situation corresponds to a frequency raig/ w,=16. For a single-frequency forcing at<1, Ern and Wesfreid

The basic flow is given asVge(X,t)=Vg £(X,t) [7] showed that a prediction of the secondary flow temporal

+ Vg ue(x,t), by the superposition of the basic flows

Ve 1r(x,1) for y=1 andVg pe(xt) for y=4 with amplitude 900
Q,1Q, expressions for these being giver] &7]. Note that — | = 2|+ = =+ |
the instability threshold for a single-frequency forcingat 400
=1 is close to the instability threshold for a single-frequency

forcing at y=4 (roughly T,=200, se€[8]) and that as a T -
consequence of the ratio chosen for the amplitudes of the 3qq i
two modulations, for the Taylor numbers considerdd, ( " | 7
=<500), the modulation foty=4, if considered alone, would & U

T
[
1
'
I

be stable. 200+ + e
Figure 1 shows foll ;=325 the evolution oV, {t) over
one cycle for the two-frequency forcing af{w;)=1 and
y(w,)=4 (thin curve and for a single-frequency forcing at 1007 1
y=1 (thick curve. The Taylor numbefl, is calculated us-
ing the amplitude};, with an error lower than 3.5% due to . ‘ . .
the viscosity estimation. The period is one cycle for 1 00 0.2 0.4 0.6 0.8 1
(roughly 86 $ and is scanned with about 518 data points. ¢
The time origin of data acquisition has been chosen to be the
moment when the rotation of the cylinders changes sign. The FIG. 3. Instantaneous critical Taylor numbers for the two-
peaks correspond_ to successive growth and d_e_lmping of Seftraquency forcing aty(w;)=1 with y(w,)=4 obtained numeri-
ondary flow(four times fory=1). For a destabilizing forc- ¢4yl over one flow cycle with a finite-gap quasisteady linear sta-
ing at the single frequency=4, the evolution ofWn{(t)  pility analysis (¢=0.112). Regions inside the curves indicate
during a cycle, not reproduced here, shows two large peakguasisteady unstable flow conditions. The horizontal lines for dif-
of Secondary flow. The Comparison between the two plOtS Oferent T, values correspond to thé/,,{(t) peak widths observed
Fig. 1 shows that secondary flow peaks are strongly reduceskperimentally for an amplitude o#V,,=0.15 (thin lines and
in width in the two-frequency forcing case. Maximum peak W,,,.=0.3 mm/s(thick lines.
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06 ~ v value over the gap width of the instantaneous finite-gap Ray-
04 | Vf;j; | leigh discriminant being negative fo#=0.14 and positive for
——Vour t~0.18. Also interesting is the numerical prediction around
02 __--—"]*"%  the timest~0.3 and 0.8. Around these times, the flow is
0.0 | ::::>=——:————:=~::::\ 1 stable at the single frequengy=1. Here, in the presence of
o2 -7 T~ ] o1s vy=4, we see the existence of a temporal unstable region
SO = each half a period,/2 of the y=4 modulation. Experimen-
-04 - tally, this behavior is more clearly observed around the time
06 | ) t~0.8 in Fig. 2, where secondary flow peaks appear every
I . T2/2.
-08 ____________ S =018 These results show good agreement for the time-
1.0 iﬁ';z dependent behavior of secondary flow between the experi-
15 ‘ ‘ (=014 ments and a finite-gap stability analysis assuming both qua-
o 0.2 0.4 0.6 0.8 1 sisteadiness and linearity. Most notable is the agreement with
Yy g

the prediction of the finite-gap quasisteady calculations that
FIG. 4. Profile across the gapfor the timest=0.14 andt  the secondary flow experiences over one cycle of about 20
=0.18 of the base flow velocities for a single-frequency forcingSuccessive growth and damping events, with a well-defined
Vg r at y=1 andVg ¢ at y=4, and for a two-frequency forcing periodicity (eitherr, or 7,/2). The particular times of appear-
Vg r=Vg 1+ Ve pe at y=1 with y=4. ance and disappearance of secondary flow are also provided,
generally with a slight anticipation. The fact that the linear
regions is given over a flow period by the quasisteady finiteanalysis is in good agreement with experimental results sug-
gap linear stability analysis. We use the same numerical pragest the following interpretation of the secondary flow be-
cedure for the case of the two-frequency forcing. Neutral andiavior. Two types of secondary flow are observed. The first,
axisymmetric perturbations are considered. Figure 3 showsear the timeg¢~0.1, 0.4, 0.6, and 0.9, corresponds 0
the instantaneous critical Taylor numbers obtained at any=1 secondary flow modified by the presence of the higher
fixed timet, over a period for the corresponding basic flow frequencyy=4, the main effect of this modulation being the
Vg 2r(X,tp). Regions inside the curves correspond to un-peak windowing. A physical explanation of flow restabiliza-
stable flow conditions. Comparison with Figs. 1 and 2 showsion leading to this peak windowing could account on the
that there is a good agreement between experiments and ni@&ct that, for a forcing at a single frequency, the vortex struc-
merical calculations. To facilitate the comparison for differ- ture reverses its rotation half a period laf@}. We suggest
ent Taylor numberg,, we have reported on the numerical that the peaks appear when the vortex structures induced by
results of Fig. 3 the temporal widths of the experimentalboth frequencies rotate in the same direction. Halj-a4
peaks for the amplitud®V,,,.=0.15 mm/s forT,=200 and period later, the tendency of thg=4 structures to revert
260 (thin lines andW,,=0.3 mm/s forT,= 280, 300, 325, their rotation direction may damp the vortex structure. This
350, 400, 450, and 50@hick lines, obtained by[9]. These seems also supported by the fact that the two-frequency
amplitudes were chosen as a compromise between discrimpeaks for instance arourté=0.1 andt~0.6 are not located
nating the maximum number of peaks and measuring theiin the same place with respect to the=1 peaks but are
maximal width. In particular, the windowing at, of the  shifted byr,/2. The second type of secondary flow is the one
higher frequency over the secondary flow temporal regionsroundt~0.3 and 0.8, whery=1 alone would have been
of y=1 is well-recovered numerically. This peak windowing stable, and is due to the higher frequengy 4 oscillation
can be explained in the quasisteady calculations by considsuperimposed to the basic flow of 1, which is at that time
ering the evolution in time of the basic flow profile in the close to a uniform rotation around its maximum amplitude.
gap, as illustrated in Fig. 4 for the tim¢s-0.14 and 0.18. This flow is known to be unstable eaeh/2 [7].
Fort~0.14, bothVg r andVp |  are negative, the resulting Further work includes variation of parameters such as the
basic flow has an accentuated curvature and the flow is founfidlequency ratioR,= y(w,)/ y(w,) and the amplitude ratio
to be unstable. For~0.18 on the contrary, th¥g ;- and  Ro=1,/{;. In particular, in the range of validity foR,
Vg, r Curvatures compensate. The resultdg - is then andR, of a linear analysis, the numerical prediction of the
nearly uniform over the gap, giving quasisteady stability.secondary flow temporal behavior may be extended to more
This is in keeping with Rayleigh’$10] and Hall's[11] sta- general periodic forcings. The effect of these parameters on
bility criterion in its finite-gap formulation, the minimum the instability threshold also deserves investigation.
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